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The kinetic consequences of resonance tunnelling processes that may occur in chemical reactions 
are investigated in terms of a multi-centered unsymmetrical Eckart potential barrier. This potential 
function does not only simulate the possible existence of intermediate wells in the effective potential 
energy cut along the reaction path, but also is amenable to analytic solutions. The reaction rate as 
well as its dependence on temperature, reduced mass, Q-value, activation energy and barrier dif- 
fuseness are evaluated for successively increasing the number of barrier stages. Comparisons between 
results due to single and multi-humped potential energy barriers are made and discussed. 
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1. Introduction 

Intermediate potential wells that may show up in the effective potential 
energy cut, along the chemical reaction path, are possibly due to the presence 
of hollows [1 -3]  in the potential energy surface or produced by the dynamic 
coupling between translational and vibrational motions [4-6].  Such inter- 
mediate wells are capable of trapping the activated complex into quasi-bound 
states, which are indicated by resonances in the tunnelling probability. This 
resonance contribution competes with the slowly varying direct one and conse- 
quently enhances the penetrability through the potential barrier appreciably. 

Child [7] has evaluated, using the JWKB method, the penetrability factor 
for a general monotonic  double humped barrier to provide an intermediate 
trap for the activated complex. Unfortunately, the involved action integrals are 
not amenable to be performed analytically. 

Conner [8] has specialized Child's treatment for a parabolic dip joined by 
two inverted parabolic hills, for which analytic solutions are presumably permit- 
ted. Nevertheless, such segmental parabolic representation misdescribes the 
entrance and exit regions of the potential barrier. Further and more importantly, 
the connection formulae in the JWKB method [9] are unidirectional and con- 
sequently the validity of the method is questionable, particularly when the scat- 
tering energy is close to the top of the second hump of the potential barrier [10]. 

In this paper, we suggest a prescription of a mult i-humped potential barrier, 
for which not only the correct asymptotic  requirements are satisfied, but analytic 
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solutions are also permitted. This can be accomplished by generalizing the double 
centered Eckart function [11] to any arbitrary number of centres. 

The main objectives of this work are threefold: Firstly, to study the kinetic 
consequences of incorporating a multi-humped potential barrier in the course 
of calculating the chemical reaction rates. Secondly, to perform a parametric 
study concerning the potential parameters with the eventual purpose of probing 
the actual character of the effective potential energy along the reaction path. 
Thirdly, to search for systematic features affecting the reaction rate when different 
choices are made for reactants and for different temperatures. 

Section 2 outlines the solution of the scattering problem corresponding to a 
multi-centered Eckart potential barrier, and the procedure adopted for extracting 
the penetrability. In Section 3, the penetrability and the chemical reaction rate 
are evaluated for the H 4-H2 system. The effects of varying the temperature, 
reduced mass, Q-value, activation energy, barrier diffuseness and the number 
of barrier stages are investigated. A general discussion of the numerical results 
is also given. Finally in Section 4, a summary and some concluding arguments 
are given. 

2. Theory 

The key to this study is the one dimensional potential scattering equation 
[7, 12] which governs the translational motion: 

2#(u) ~u 2 + V ( u ) + e , ( u ) - E  F,(u)=0 (2.1) 

in which E is the scattering energy, V(u) is the potential energy barrier along the 
reaction coordinate u, e,(u) is the eigenenergy belonging to the vibrational motion 
which is perpendicular to the reaction coordinate and #(u) represents an effective 
reduced mass which may vary along the reaction coordinate. 

Asymptotically, for u--* + o% the potential barrier, the vibrational eigen- 
energy and the effective mass approach constant values V-, e,, # and V +, ~+,/~+ 
corresponding to reagents and products channels respectively. Consequently the 
solution of Eq. (2.1) can be expressed asymptotically as a linear combination of 
incomming and outgoing plane waves. More precisely, the asymptotic solution 
corresponding to the reagents channel is: 

lim F.(u) = a, + exp(ik~- �9 u) + a l e x p ( -  ik~  �9 u) (2.2) 
u - - ~  - -  o o  

while in the products channel there are only outgoing waves: 

lira F.(u) = ap + exp(ik. + �9 u) (2.3) 

where k~ denotes the channel wave number: 

k+ = V 2V+ + - ~ - -  (E - e~- - V +). (2.4) 

At this point it is to be noted that the penetrability through the effective potential 
barrier: 

f~.(u) = v(u) + ~.(u) (2.5) 
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is simply the ratio of the transmitted flux to the incident one: 

P,(E)-  k+ #- a t E  (2.6) 
- k2 #+ a~ " 

Therefrom, the chemical reaction rate can be evaluated since it is essentially the 
Laplace transform of the penetrability (13); namely: 

dE exp( -  E/R T) P,(E). (2.7) k , (T ) -  (#_RT)a/2 o 

Accordingly, the immediate task of the present work is to calculate the penetrability 
factor with the eventual purpose of evaluating the reaction rate constant. This 
task, presumably, can be achieved only after supplying not only the effective 
potential barrier (EPB) but also the effective reduced mass (ERM). 

Let us assume, as mentioned before, that the EPB can be expressed as a linear 
combination of a multi-centered Eckart function of the form: 

r/o(U)= ~=,{Aifi(u-ui)+B,a, ~--Tfdu-ui) } (2.8) 

where fi(u - ui) denotes the single Eckart function: 
1 

fi(u - ui) = 1 + e x p ( -  (u - ui)/a~) (2.9) 

which is nothing but a rounded unit step function centered at u = u i with the 
diffuseness ai. 

Presumably one can generate, by virtue of the analytic form as defined by 
Eq. (2.8), potential functions that do not only approach constant values in the 
asymptotic regions but also give rise to N humps separated by N -  1 intermediate 
wells in the interaction region. The heights of the humps, E~, as well as the depths 
of the wells, De, can be expressed in terms of the strength parameters Ai and Bi; 
namely 

(A i + Bi)2 i 
E l -  4Bi +(1 -6 i l  ) ~ A k; i= 1,2, . . . ,N,  (2.10) 

k = l  
J 

Dj= ~ Ak; j = I , 2 , . . . , N - 1  (2.11) 
k = l  

provided that the width of each stage does not exceed the separation between 
the closest centres; or equivalently: 

ui+ 1 - ui > 2nai. (2.12) 

Furthermore, let us assume that the variation of the ERM with the reaction 
coordinate can be also described by an Eckart step function of the form: 

#(u) = #- + (#+ - #-) fo(u - Uo) (2.13) 

which permits smooth variation between the asymptotic reduced masses # -  
and/~+ about u = Uo along the reaction coordinate. Nevertheless, if we substitute 
both the EPB and ERM as given respectively by Eq. (2.8) and Eq. (2.13) into 
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Eq. (2.1); then after simple manipulation we can absorb the variation of the mass 
into the potential; namely 

2#-  8u 2 

N 

+ (1 - ~+/~- )  fo(u - Uo)-  E] V(u) = 0 

(2.14) 

in which A~ and/}~ stand for the strength parameters after being appropriately 
scaled. 

Further, if we fix Uo to any one of the centres u,, say uk, then we can combine 
the mass term into the first member of the series representing the EPB. This 
implies, simply, the addition of the factor (1 - #+/#-)  E to the strength Ak. There- 
fore one gets the equation 

h2 0 2 

2#-  8U z - -  + [ , i i  + (1 - ~ + / . - )  E 6 j  f ~ ( u .  ui) 
i 

+ niai~u fi(u-ui)- El F(u)=O 
(2.15) 

which indicates that it is possible to render the varying mass problem to a constant 
mass one after appropriately scaling the potential strength parameters. 

Our goal now is to solve the above Eq. (2.15) with the eventual purpose of 
calculating the penetrability through the N-humped EPB that has been mentioned 
above. The natural way of approaching this problem is to divide the reaction 
coordinate, as depicted in Fig. 1, into N regions separated by N -  1 boundaries, 
bl, b2, ..., bN-1, that are placed at the mid-points between the centres ul, u2 . . . . .  
and uN. For each region the scattering Eq. (2.15), as we shall see latter, can be 
solved analytically, provided that the corresponding potential width does not 
exceed the separation between the closest centres. By employing the continuity 
condition, which requires that these regional solutions should be matched 
smoothly at the boundary points, it is possible to express the scattering coefficients 
of the last stage in terms of those belonging to the first one. The ratio of the scat- 
tering coefficients gives, essentially, the desired penetrability factor. 

In order to accomplish this plan, let us consider Eq. (2.15) for which the 
reaction coordinate is restricted to the i 'h region: u e [bi, bi+ 1]; namely 

( l - + . 4 z + a g B ~ u  f ~ ( u - u i ) - E  Fz(u)=0; (2.16) 

Fig. 1. Schematic multi-centered symmetrical Eckart potential function (Ai = 0) 
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now by introducing the transformation [15]: 

1 
Yi = 1 + exp((u - ui)/ai) (2.17) 

together with the change of the dependent variable from F(yi) to ~o(y/) as follows 

F(yO = y;,(1 - y~)~ ~(yi) (2,18) 

which after being inserted into Eq. (2.16), one finds that q~(y/) satisfies the hyper- 
geometric equation [16]: 

0 2 0 
y,(1 - yi) ~ + {2v i + 1 - 2(v/+ 2i + 1) yi} #y--[ 

(2.19) 
2#-  aiZ ] 

- (v~ + 2~) (v~ + 2~ + 1) h2 /~  ~0(y~) -- 0 .  

The general solution of this equation can be expressed in terms of the hyper- 
geometric series; namely 

~o(y/) = elF(�89 + vi + 2 /+  e/, �89 + v/+ 2 / -  e/; 2vi + 1; y/) 
(2.20) 

"1- e g y -  2V~F(�89 - -  v i + 2i  .-k ei ,  1 _ vi  -.k 2i - -  gi ; - 2vi + 1; Yi) 

provided that v~, 2/, and e~ are assigned the values 

v / = i  V h2  A / ) = i f l i ,  (2.21) 

V 2~,-,4 
2 i = i  . h2 E ~ i ~ i ,  (2.22) 

. 1 1 2 # - a  2 1 - i ,5 /  (2.23) 
~ / = , ~  ha B,-T 

Consequently, the complete solution can be written in the form 

F(yi) = r+ ~+ (Y/) + r7 Yl7 (Yi) (2.24) 
where 

~ f  (yi) = (1 -- y/)+/~'y~/a'F(�89 + i(o h ~ fli + 6i), �89 + i(~/7t- f l / -  6,); 1 -T- 2/fig; Yi) (2.25) 

in which the hypergeometric series remain convergent as long as yl is small or 
u is restricted to be u > u v Nevertheless, the above solution can be extended to 
the region u _  u/, by continuing the hypergeometric series analytically [16]. This 
enables us to cast the complete solution as given by Eq. (2.24) into an alternative 
form which is convergent in the region u < u~; namely: 

F(y,) = l~ + s (y/) + If s (y,) (2.26) 
where 

~,-+ (.v,) 
(2,27) 

= (1 - y~) +- i~,y(/P'F(�89 + i(+ ~ / -  fi~ + ~i), �89 + i ( •  ~ / -  fli - a/); 1 • 2i~ i; 1 - y/) 
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and 
1, -+ = r, + 4 + r,- d?  

in which 
(2.28) 

F(-T- 2icq) F(1 - 2ifl,) (2.29) 
c? = F(�89 + i(-T ~ i -  fl, + a,)) r(�89 + i (g  a , -  f l , -  6,)) 

and 
+ F(-T- 2iai) F(I + 2ifl,) . (2.30) 

dy = F(  1 + i(-T- or i + f l i -  6i)) I'(�89 "Jr- i(-T- oq + f l~-  6i) ) 

Before proceeding to calculate the penetrability, we first need the asymptotic 
behaviour of ~i(Yi) and s at infinitely positive and negative values of u 
respectively. This can be easily accomplished in view of the fact that the hyper- 
geometric series involved in Eq. (2.25) and Eq. (2.27) become unity as the arguments 
Yi and 1 - yi approach zero. Accordingly, we get 

lim ~+  (y~)= exp(+  iflfl ,  u) (2.31) 
I g ~  q - o O  

and 
lim 5~ + (Yi) = exp (_  i~iaiu ) (2.32) 

u - - +  - -  oO 

which indicate that the correct asymptotic requirements are inherited in each 
stage. 

Our aim now is to express the amplitude coefficients belonging to the first 
potential hump in terms of those belonging to the last one in order to extract 
the penetrability factor as given by Eq. (2.26). This can be accomplished by em- 
ploying the continuity condition which requires that the regional solutions should 
be matched successively at the connecting boundary points. These requirements 
provide 2. ( N - 1 )  linear equations connecting the amplitude coefficients be- 
longing to adjacent regions i and i +  1 of the form: 

r+~+(b~)+rF~F(b~)=l~+~L~'~+l(b , )+lT+l~+l(b~) ,  (2.33) 

r+J t+(b , )+ryJ l , (b , )= lL ,SY i+ , (b , )+ l~+~c~ ,+ , (b , ) ,  (2.34) 

where i is allowed to take the values 1, 2 . . . .  up to N - 1, and the dot refers to the 
differentiation with respect to u. These derivatives explicitely read: 

@u~ + (y,) = a~ ~y~'P'(1 - y,)'~'+ * {IT  ifl, + i~,yj(1 - y,)] 

�9 F(�89 + i(= i -T- fli + 6,), �89 + i(a,-T- f l , -55 , ) ;  1 -T- 2ifli ; y,) 

+ (�89 + i(ai-T- fli + hi)) (�89 + i(cti -T- fli - hi)) Yi (2.35) 
1 -T- 2ifl~ 

�9 F (  3 + i(cq -T- fli + fi,), 3 + i(~, ~ fl, - 6,); 2(1 -T- ifl,); y,)}  
and 

9 . 5 f  i + (Yi) = aFt  yy  IP'(1 - Yi) +- i~, + 1 { [ - -  ifl i +_ icqyj(1 -- yi)] 

�9 F(�89 + i (_  c q -  fl, + fit), �89 + i(__. ~ i -  f l , -  6~); 1 __+ 2icq ; 1 - y~) 

+ (1 + i (+ ~ i -  fli + 6i)) (�89 + i(+_ c q -  f i i -  6,)) Y~ 
1 -T- 2ifli 

�9 F ( ~  + i(___ cq - fli + 6,), ~ + i(+_ cq - fl, - 6,); 2( t  _ i~,);  1 - y , ) } .  

(2.36) 
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Furthermore, the amplitude coefficients l[+ a and l[+ 1 are in fact related to r[+l 
and ri-+ 1 by virtue of Eq. (2.28). Therefore one can eliminate l~-+ 1 and l[+ i and 
obtain recurrence relation which can be expressed in the matrix form: 

( r~ I {~+(b~) ~.:(bi)l-l{~i+i(bi) @-+l(b,)t(c[+ , d++il(r++l I 
r~ / = I~((b~) Ni-(b,)] I~,++,(bi) ~cPi+l(bi)]lc~+i d~+l/ \r;d" 

(2.37) 

Therefrom one obtains for the penetrability 

P(E)=  ~N # -  r~ 2 
cq ~-; ~ - /  (2.38) 

from iterating Eq. (2.35) ( N -  1) times after being subjected to the outgoing 
boundary condition as given by Eq. (2.24). 

At this point it is of interest to specialize the generalized treatment mentioned 
above to the simple case where one potential hump is allowed in the EPB. This 
can be immediately accomplished by restricting the index N to be one and as a 
consequence Eq. (2.15) reduces to 

h 2 02 
e " ~ - E 1 (2.39) 

which in view of Eq. (2.24) and Eq. (2.26) together with the outgoing boundary 
condition as given by Eq. (2.3) which possesses the solutions: 

F(u) = r + ~+ (Yl) (2.40 a) 
and 

F(u) = r~ c + ~q~ (Yi) + r~ c[ 5q( (Yi) (2.40b) 

which are not only continuous at u = u 1 but also satisfy the correct asymptotic 
requirements. 

The penetrability can be calculated either from the ratio of the transmitted 
flux to the incident one or from the reflection coefficient 

c~ -  2 (2.41) 
IR= c [  

after exploiting the fact that the total flux is conserved 

P = 1 - lR. (2.42) 

In this case the latter approach is simpler, and consequently after employing 
Eq. (2.29), the reflection coefficient explicitly reads: 

r(�89 + i(61 - fl, - al) ) F(�89 + i ( -  (~1 - -  f l i  - -  0~1))  2 (2.43) 
IR = F(�89 + i(61 - fll + ~,))  F(�89 + i ( -  6a - fll + cq)) 

which by virtue of the relation 

F ( 2 + i ~ ) = g  coshnorc (2.44) 

becomes 
P =  1 - c~ [n(61 - f l i  + e l ) ]  c o s h [ n ( -  61 - i l l  + e l ) ]  (2.45) 

cosh In(61 + fli -- cq)] cosh [n(~51 + fli + 0q)] 
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from which one acts, for the penetrability, the closed form expression [14] 

cosh [2n(~ 1 - il0] + cosh [2~z61] 
P = l - cosh [2n(a, + ill)] + cosh [2rt51] " (2.46) 

However it is to be noted that the effect of allowing the reduced mass to vary 
along the reaction coordinate is included in the scaled strength parameters A1 
and B,. Nevertheless, it can be easily shown that they can be expressed explicitely 
as :  

A1 = AI#+/# - (2.47) 
and 

B1 = BI(1 + #+/#-)/2 (2.48) 

by virtue of which ei, fli and 6~ become: 

sl = ~k [ /2#-  E (2.49) 

and 

fll = h 1 / 2 # -  (E - A 0  (2.50) 

51 = BI(# + + # - ) -  4a,Z (2.51) 

which are reducible to the conventional expressions for the case of fixing the 
reduced mass (# + = #-). 

3. Results and Discussion 

In this section we report the actual computations of the penetrability factor 
and its Laplace transform on the basis of the procedure that has been outlined 
in the previous section. This task is made for the purpose of studying the kinetic 
consequences of incorporating a multi-humped Eckart potential barrier along 
the reaction coordinate. 

The plan of the computational work can be divided into three consecutive 
stages: First, we develope the necessary algorithm to generate the hypergeometric 
and Gamma functions that are involved in the penetrability factor as well as the 
numerical integration subroutine which is required for computerizing the chemical 
reaction rate. Second, we determine all the physical parameters occuring into 
the scattering problem from the relevant data. Third, we perform the appropriate 
repetitions by which it is possible to study the effect of varying, temperature, 
reduced mass, Q-value, activation energy, barrier diffuseness and the number of 
barrier stages. 

The atomic mass unit (a.m.u.), the kilo calorie (kcal) and the Angstroem (A) 
have been chosen to be the units of the mass, energy and length respectively. 

The hypergeometric functions, which occur in the scattering solution, are 
generated using the series representation: 

F(c) F(a+n)F(b+n) Y" (3.1) 
f(a, b;c; y ) -  r(a)r(b) r ( c+n) r (n+  1) 

n=O 
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which is absolutely convergent when [u[ < 1 and c is restricted not to be negative 
integer [16]. In fact a, b, and c are allowed to be complex. 

For the Gamma functions of complex argument such as 

r (x  + iy) = IF(x + iy)l exp(i argF(x + iy)) (3.2) 

which are present in the scattering amplitudes, we employed the expressions [ 17]: 

and 

~[~io [ y2 .]-1/2 IF(x + iy)[ = r(x) 1 + (x + n) ~ (3.3) 

arg F(x + iy) = y~p(x) + Y ~  - arctan Y (3.4) 
n X+n X+n 

where lp(x) denotes the logarithmic derivative 

= r ' ( x ) / r ( x ) .  (3.5) 

Nevertheless, we are specially interested in the case where x is either 1/2 or 1. 
For such cases Eq. (3.3) and Eq. (3.5) become simply 

F ( 2 + i Y  ) = Vco~hrcy ' (3.6a) 

V rc (3.6b) 
IF(1 + iy)[ = ysinhzcy ' 

V)(�89 = - 3 , - 2 1 n 2 ,  (3.7 a) 

~(1) = - ~ = - 0.5772156649. (3.7b) 

The extended Simpson's rule [17] is applied for performing the numerical 
integrations involved in the evaluation of the chemical reaction rate after properly 
adjusting the integration interval to match the resonance structure which may 
show up in the integrand. 

As a test example, the reactions: 

H + H 2 ~ H 2 + H  

D + D 2 ~ D 2 + D  

D + H 2 ~ D H + H  

H + H D ~ H 2 + D  

H + D z ~ H D + D  

D + D H ~ D 2 + H  

H + D H ~ H D + H ,  

D + H D ~ D H + D  

(3.8) 
(3.9) 

(3.1o) 
(3.11) 
(3.12) 
(3.13) 

(3.14) 
(3.15) 

have been considered not only for the significance of the (H, H2) system, but also 
for the availability of the potential energy data [6, 18]. 
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Table 1. Characteristics of the potential energy surfaces for the reactions indicated above 

No. Reaction V(u*) ~0(u*) e0( -  oo) E~ B # -  

kcal/mole a.m.u. 

1 H + H 2 ~ H 2 + H  9.130 3.122 6.201 6.051 24.204 0.672 
2 D + D 2 ~ D 2 + D 9.130 2.208 4.385 6.953 27.912 1.344 
3 D + H / ~ D H  + H 9.130 2.681 6.201 5.610 22.440 1.008 
4 H + H D ~  H 2 + D 9.130 2.591 5.370 6.441 25.764 0.756 
5 H + D 2 ~ H D + D  9.130 2.675 4.385 7.420 29.680 0.806 
6 D + DH ~ D z + H 9.130 3.675 5.370 6.435 25.740 1.209 
7 H + D H ~ H D  § H 9.130 3.122 5.370 6.992 27.528 0.756 
8 H + HD ~ HD + H 9.130 2.208 5.370 5.969 23.972 1.209 

The values of the static potential energy barrier V(u*) at the saddle point u*, 
together with the zero-point vibrational energies Co(U*) and eo(-Oo), which 
correspond to the reactions (3.8-3.15), are listed in Table 1. The activation energy 
Eo measured from the zero-point vibrational energy: 

E, = V (u*) + Co(U* ) - So ( -  oo) (3.16) 

is also listed in the fifth column of Table 1. 
By virtue of Eq. (2.10) and the activation energy the value of the strength 

parameter B, that is responsible for symmetrical shapes, can be easely shown to be 

B = E  a (3.17) 

in view of the fact that the Q-values of the reactions considered above are zero 
(A = 0). Figures 2 -3  show respectively the penetrability as a function of the 
scattering energy and the Arrhenius plot of the chemical reaction rate that corre- 
spond to the reactions listed above for a single humped EPB with a diffuseness 
of a = 0,2. It is to be noted that the penetrabilities show slowly varying step 
functions and the corresponding Arrhenius plots are nonlinear. Naturally, this 
is expected from single humped barriers. Further, it is interesting that the tunnel- 
ling probability is inversely proportional to both of the barrier height and the 
reduced mass. 

P 
1.0 

0.8 

0.E 

0.z, 

0.2 

0 

a1:0.2~ -~ 

o~O~-~j.->- ................ H'H2 f ~  
....... D+D2 /,, 
. . . . . .  D+H 2 / 
. . . .  H+HD // , , # 
. . . . . .  H.o~ o/ # ."' 'Z"* .... 0+o. / ,,, ' /  / '  /.;,'/ 
. . . .  . + ~  /.,';' / ,..' ,§ ,/~ 
--~--o D + HD / ~ . 1 " ? /  .//" , J ; "  .~ / / "  

& 6 8 10 12 E 

Fig. 2. Scattering energy dependence of the penetrability through single humped potential barriers 
that correspond to the reactions indicated. The diffuseness parameter a is taken to be .2 for all the 

reactions considered 



Resonance Tunnelling in Chemical Kinetics 11 

! . . . .  .+H0 \ o . . - - L ~ - - - .  
. .  - o - - o  D+HD ~ ~ " '~,, 

~o  

f~,~,*,,~, o,,, 

-8 L- ",.<,"-,, ~176 

. . . .  D+DH "-,. "~,~. ~ 

0.0035 0 . 0 0 4 0  0.0045 1-- 
T 

Fig. 3. Arrhenius plots of logk against I / T  for the reactions studied here. These plots correspond to 
the penetrabilities that are shown in Fig. 2 

The effect of varying the diffuseness and the number of potential humps are 
only investigated for the first reaction H + H 2 ~ H z  + H. The corresponding 
results are depicted in Figs. 4-13 which represent the penetrability and the 
Arrhenius plots that correspond to one, two, three, four, and five identical potential 
stages and for several values of the diffuseness parameter as listed in Table 2. 
The separation between the potential stages is taken to be 

Ui + 1 - -  U i  = 10 a i (3.18) 

in order to minimize the overlap between adjacent stages. The diffuseness param- 
eters are chosen such that 

ai=al/i i=2 ,  3,4, and 5 (3.19) 

which ensures the same total width of the EPB whatever the number of potential 
stages are. 

Table 2. Scheme of the diffuseness and seperation parameters as function of the single stage diffuseness 
parameter a and the number of potential stages, i. a is varied from 0.5 down to 0.2 in steps of 0.1 while the 

number i of stages is varied from two up to five 

N 1 2 3 4 5 

a N 0.5 0.25 0.25 -0 .170  0.170 0.170 
u u 0.0 -1 .25  1.25 -0 .170  0.000 1.700 
a N 0.4 0.20 0.20 0.130 0.130 0.130 
u N 0.0 - 1.00 1.00 - 1.300 0.000 1.300 
a N 0.3 0.15 0.15 0.100 0.100 0.100 
% 0.0 -0 .75  0.75 -1 .000  0.000 1.000 
a N 0.2 0.10 0.10 0.067 0.067 0.067 
u N 0.0 - 0 . 5 0  0.50 -0 .675  0.000 0.678 

0.125 0.125 0.125 0.125 
-1 .875  -0 .025  0.625 1.875 

0.100 0.100 0.100 0.100 
- 1.500 -0 .500  0.500 1.500 

0.075 0.075 0.075 0.075 
1.125 -0 .375  0.375 1.t25 
0.050 0.050 0.050 0.050 

-0 .750  -0 .250  0.250 0.750 

0.10 0.10 0.10 0.10 0.10 
- 2 . 0 0  - 1 . 0 0  0.00 1.00 2.00 

0.08 0.08 0.08 0.08 0.08 
- 1 . 6 0  - 0 . 8 0  0.00 0.80 1.60 

0.06 0.06 0.06 0.06 0.06 
- 1.20 - 0.60 0.00 0.60 1.20 

0.04 0.04 0.04 0.04 0.04 
-0 .08  - 0 . 4 0  0.00 0.40 0.80 
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These plots correspond to the penetrabilities that are shown in Fig. 4 

The variation of the diffuseness parameter al concerning the single stage 
EPB affects not only the slope of the penetrability step function, but also its 
threshold. This is clearly shown in Fig. 4. In fact, both of the slope and the threshold 
are increasing functions of the-diffuseness. Accordingly, the chemical reaction 
rate becomes enhanced as the diffuseness is decreased as shown in Fig. 5. The 
main reason behind this is lowering the threshold which is further amplified 
by the exponential kernel that occurs in the Laplace transform. 

The most distinctive feature that characterizes Figs. 6, 8,10, 12 is the appearance 
of resonances in the penetrability when more than one potential stage are allowed 
in the EPB. These resonances indicate the quasi-bound states that are set up in 
the intermediate wells, and their widths are inversely proportional to the half 
life times of the activated complex that is trapped in such states. However, it is 
rather difficult to draw general rules that can describe resonance tunnelling 
phenomena from the penetrability curves. Nevertheless it is fairly clear, as can 
be seen from Figs. 7, 9, 11, and 13, that the chemical reaction rate gets enhanced 
as the number of potential stages in the EPB increases apart from some exceptions 
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by the number of stages 

which occur for small values of the diffuseness parameter. The reason behind 
this lies in the fact that as we increase the number of potential stage resonance 
tunnelling contribution by turn increases, particularly, in the lower energies 
which affect appreciably the chemical reaction rate. 

Furthermore, it is to be added that as we increase the depth of the intermediate 
wells then the density of the quasi-bound states increases and consequently the 
resonance tunnelling contribution increases too. 

4. Summary and Conclusions 

In this paper, we have developed a generalized treatment of tunnelling phe- 
nomena in chemical reactions, on the basis of adiabatic approximation and in 
terms of a multi-centered Eckart potential barrier. Evidently, such treatment 
provides not only unified description of both direct as well as resonance tunnelling, 
but also enables us to probe the actual character of the potential energy barrier. 

The effect of including intermediate wells in the effective potential barrier 
has been thoroughly investigated. It is to be noted that tunnelling probability 
increases with increasing the number of intermediate wells. On the other hand 
the tunnelling probability decreases with increasing the value of the diffuseness 
parameter. 

In conclusion, we wish to draw the attention to some advantages and draw- 
backs which seem to be inherent in the treatment we presented. As an advantage, 
the multi-centered Eckart potential is not only flexible, but also permits analytic 
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Fig. 7, 9, 11, 13. The effect of varying the number of potential stages on the Arrhenius plots of logk 
against I/T. These plots correspond to penetrabilities that are shown in the preceding figure 

scattering solution. In addition the correct asymptotic shape requirements are 
insured. Further and more importantly, the variation of the reduced mass along 
the reaction coordinate can be included in the scaling of the potential parameters. 

However, the possibility of the procedure hinges upon the validity of the 
adiabatic approximation [7]. This implies that our treatment, if applicable at 
all, is restricted to cases for which the nonadiabatic effects can be neglected. 
There is yet another difficulty inherent in our approach. If we think of our extended 
tunnelling treatment as a decoupled single channel scattering problem, then the 
effect of the other competing channels should be manifested, at least, by allowing 
the effective potential barrier to be complex. However, such a study is in progress 
[123. 
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